

Physical properties of the nuclear region in Seyfert galaxies derived from EVN observations

Marcello Giroletti (1), Francesca Panessa (2), Monica Orienti (1, 3), Akihiro Doi (4) (1) INAF Istituto di Radioastronomia (2) INAF IAPS, Rome (3) University of Bologna (4) ISAS/JAXA

Background

We are studying a sample of 28 local Seyfert galaxies to understand the physical properties of their nuclear regions.

X-ray observations reveal nuclear activity at low luminosity levels in most of them (Cappi et al. 2006), but what about the radio emission? Ho&Ulvestad (2001) revealed flux density at the milliJansky level in ~80% of them, using the VLA at 1.4 and 5 GHz. Various authors exploited the high resolution of VLBI to clarify the nature of the cores of the brightest sources. Possible interpretations include thermal free-free emission from an X-ray heated corona or two-sided jet-like structures with low speeds, indicating non-relativistic jet motion, possibly due to thermal plasma as in NGC 4151.

EVN enters the game For the faintest sources in the sample, the extraordinary sensitivity

of the European VLBI Network is a key resource. We reported in Giroletti & Panessa (2009) the results of dual-frequency EVN observations for 5 objects, resulting in clear detections for 4 of them, at least at one frequency.

New EVN observations

Motivated by the success of the previous experiment, we observed eight more targets with the same setup, including also the Arecibo radio telescope for sources with suitable declination. We clearly revealed three sources at two

frequencies, plus one source at 5 GHz only. Low

significance components are found also in other sources but it is hard to claim real detections in these cases.

Source	Phase tracking position		1.7 GHz 3σ rms	5 GHz 3σ rms	Peak position	
	(h m s)	(°′″)	(µJy beam ⁻¹)	(µJy beam ⁻¹)	(h m s)	(°′″)
(1)	(2)	(3)	(4)	(5)	(6)	(7)
NGC 3185	10 17 38.660	21 41 17.400	20	27	-	-
NGC 3941	11 52 55.363	36 59 10.890	114	88	11 52 55.347	36 59 11.90
NGC 4639	12 42 52.363	13 15 26.750	30	50	12 42 52.381	13 15 26.60
NGC 4698	12 48 22.919	08 29 14.550	160	95	12 48 22.938	08 29 14.62
NGC 5194	13 29 52.804	47 11 40.065	75	160	-	
T-11-1 C-						
Table 3. Su 3, the total fl & Ulvestad Name	mmary for detect ux density of the (2001) in column RA (h m s)	ed sources. We rep source in EVN da s 6 and 7. Dec. (° ' '')	Sort the astrometric ta in columns 4 and S1.7 GHz, EVN (mJy)	position for the m I 5, and the core fl S _{5 GHz, EVN} (mJy)	ain component in ux density in VL. S1.4 GHz, VLA (mJy)	Columns 2 an A data from H S _{5 GHz, VL} (mJy)
Table 3. Su 3, the total fi & Ulvestad Name	mmary for detect (2001) in column RA (h m s) 10 23 30.573	ed sources. We rep source in EVN da s 6 and 7. Dec. (° ' '') 19 51 54.274	S _{1.7 GHz} , EVN (mJy)	position for the m i 5, and the core fl S _{5 GHz, EVN} (mJy) 1.12	ain component in ux density in VL. S _{1.4 GHz} , vLA (mJy) 78.2	Columns 2 and A data from He S _{5 GHz, VL} (mJy) 25.9
Table 3. Su 3, the total fi & Ulvestad Name NGC 3227 NGC 3982	mmary for detect (2001) in column RA (h m s) 10 23 30.573 11 56 28.165	ed sources. We rep source in EVN da s 6 and 7. Dec. (° ' '') 19 51 54.274 55 07 30.91'	S1.7 GHz, EVN (mJy) 4 9.0 7 3.2	position for the m 15, and the core fl S _{5 GHz, EVN} (mJy) 1.12 1.3	ain component in ux density in VL. S1.4 GHz, VLA (mJy) 78.2 3.56	Columns 2 an A data from He S _{5 GHz} , VL (mJy) 25.9 1.79
Table 3. Su 3, the total fi & Ulvestad Name NGC 3227 NGC 3982 NGC 4138	mmary for detect ux density of the (2001) in column RA (h m s) 10 23 30.573 11 56 28.165 12 09 29.802	ed sources. We rep source in EVN da s 6 and 7. (° ' '') 19 51 54.274 55 07 30.917 43 41 06.87	S1.7 GHz, EVN (mJy) 4 9.0 7 3.2 5 1.3	position for the m 15, and the core fl S _{5 GHz, EVN} (mJy) 1.12 1.3 0.74	ain component in ux density in VL. S1.4 GHz, VLA (mJy) 78.2 3.56 0.45	Columns 2 an A data from He S _{5 GHz, VL} (mJy) 25.9 1.79 0.78

NGC 3982

The nuclear region of this Sy1.9 is resolved in two components, one with more compact structure (0.9 mas) and flatter spectrum (α ~0.4); the T_B is ~10^{8.5} K, suggestive of non thermal emission. The other component is 8.5 pc away and it is more resolved and with steeper spectrum

Physical properties

All the sources detected at both frequencies, i.e. NGC3227, NGC3982 and NGC4138, present one component with high brightness temperature (log T_B> 7.5) and flat spectral index (0.3 $\leq \alpha \leq 0.6$), which we ascribe to non-thermal emission from the immediate vicinity of the central black hole; steep spectrum extended components are also detected within some tens of parsecs from

the core, suggesting the presence of jets or outflows on parsec scales. The physical parameters estimated under the assumption of minimum energy are reasonable; e.g. the equipartition magnetic field is of a few mG.

brightness temperature is lower, and the physical parameters are at odd with an SSA scenario, mainly because of the too high magnetic field required; a thermal free-free origin for its radio emission seems more viable, similar to NGC 1068 (Gallimore et al. 2004). The undetected sources remain a mystery;

Source Compos ent log T_B (K) log L (W Hz⁻ $\log V \quad \log U_{\min} \quad B_{eq}$ (cm⁻³) (erg cm⁻³) (mG) NGC 3227 C 7.5 19.8 54.1 -5.76 4.3 -6.90 -6.83 -4.53 -6.14 6.5 6.1 9.1 7.2 56.9 55.9 52.0 54.9 52.1 54.8 1.2 1.3 17.8 2.8 12.2 1.4 19.7 19.8 20.0 NGC 3982 NGC 4138 19.4 18.8 Table 6. Physical quantities at 5 GHz. $\log V \quad \log U_{\min}$ (cm⁻³) (erg cm⁻³) log T_B (K) log L (W Hz⁻¹) Beq (mG) NGC 3227 7.5 5.4 5.8 7.6 5.7 7.8 6.5 19.5 52.4 54.9 54.4 52.5 54.7 51.4 52.7 -4.96 10.9 -4.90 -6.61 -6.31 -4.93 -6.37 -4.52 -5.59 19.1 19.1 19.7 19.3 19.2 18.7 1.6 2.3 11.2 2.1 18.1 5.2 S2 NGC 3982 C NGC 4138 NGC 4477

Table 5. Physical quantities at 1.7 GHz.

NGC 3227

This Sy1.5 core shows a compact (1.2 mas), flat spectrum (α ~0.6) component, with brightness temperature ~107.5 K, so presumably of non thermal nature. At about 12 pc in PA 170 and 9 pc in PA -45, we find two more extended, steep spectrum regions. This VLBI structure connects nicely to the larger scale emission observed in literature MERLIN images (Mundell et al. 1995).

NGC 4138

NGC4138 is Sy1.9 galaxy. Our EVN observations reveal a main component, detected at the two frequencies, with size ~1.4 mas, flat spectral index (a~0.3) and T_B~109.1 K. At 1.6 GHz, a second component is detected ~50 mas westward (3.5 pc), more extended.

References & Acknowledgments

For more details, see Bontempi, Giroletti, Panessa, Orienti & Doi (2012, MNRAS, 426, 588). Other references:

Cappi M. et al., 2006, A&A, 446, 459 Gallimore J. F., Baum S. A., O'Dea C. P., 2004, ApJ, 613, 794 Giroletti M., Panessa F., 2009, ApJ, 706, L260 Ho L. C., Ulvestad J. S., 2001, ApJS, 133, 77 Mundell C. G., et al., 1995, MNRAS, 275, 67

The EVN is a joint facility of European, Chinese, South African and other radio astronomy institutes funded by their national research councils. This effort/activity is supported by the European Com-munity Framework Programme 7, Advanced Radio Astronomy in Europe, grant agreement no. 227290. We acknowledge a contribution from the Italian Foreign Affair Minister under the bilateral scientific collaboration between Italy and Japan.

In NGC 4477, detected only at 5 GHz, the

since they have weak but compact cores in VLA images, e-MERLIN observations would be ideal to investigate their nature.