Verification of High Data Rate Bandwidthon-Demand networks: User Based Test Equipment

Jimmy Cullen Research Associate, University of Manchester

Contents

- NEXPReS
- Very Long Baseline Interferometry
- Test equipment
- BoD tests
- Conclusions

What is NEXPReS?

- NEXPReS = <u>N</u>ovel <u>EX</u>plorations <u>P</u>ushing <u>R</u>obust <u>e</u>-VLBI <u>S</u>ervices
- Three years (start 1 July 2010)
- Funded through the European Community's Seventh Framework Programme (FP7/2007-2013), Contract n°: RI-261525
- Budget: 5,745,000 € (EC contribution: 3,500,000 €)
- Objective: further improve the astronomy technique of electronic Very Long Baseline Interferometry (e-VLBI) with the objective of incorporating it into every experiment conducted by the European VLBI Network (EVN)
- Means: develop data caching and implement dynamically provisioned network resources to offer the best of both worlds: the data archiving and re-processing afforded by traditional disk-based VLBI and the speed and flexibility of e-VLBI

NEXPReS Partners

Coordinator

Joint Institute for VLBI in Europe (<u>JIVE</u>), EU (The Netherlands)

National Astronomy Institutes

- The Netherlands Institute for Radio Astronomy (ASTRON), The Netherlands
- Istituto Nazionale di Astrofisica (INAF), Italy
- Max Planck Gesellschaft zur Foerderung der Wissenschaften E.V. (MPG), Germany
- The University of Manchester (<u>UMAN</u>), United Kingdom
- Chalmers Tekniska Hoegskola AB (OSO), Sweden
- Ventspils Augstskola (VENT), Latvia
- Fundación General de la Universidad de Alcalá, together with Instituto Geográfico Nacional (FG-IGN), Spain
- Aalto University Metsähovi Radio Observatory (AALTO), Finland
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia

NREN Providers and Advanced Computing Facilities

- NORDUnet A/S (NORDUnet), Denmark
- SURFnet bv (SURFnet), The Netherlands
- Poznan Supercomputing and Networking Center (PSNC), Poland
- Delivery of Advanced Network Technology to Europe Limited (DANTE), EU (United Kingdom)
- Technische Universität München (TUM), Germany

NEXPReS Infrastructure

NORDUnet conference - 18th September 2012 - Oslo, Norway

Activities

#	Description	Leader				
WP1	Management of the Consortium	T. Charles Yun, JIVE				
WP2	EVN-NREN	Richard Hughes-Jones, DANTE				
WP3	eVSAG	Francisco Colomer, FG				
WP4	Communication	Kristine Yun, JIVE				
WP5	Cloud Correlation	Arpad Szomoru, JIVE				
WP6	High Bandwidth on Demand	Paul Boven, JIVE				
WP7	Computing in a Snared Infrastructure	Mark Kettenis, JIVE				
WP8	Provisioning High-Bandwidth, High-Capacity Networked Storage on Demand	Ari Mujunen, Aalto				
MANCHESTER 1824 NORDUnet conference - 18th September 2012 - Oslo, Norway						

Interferometry

- Angular resolution ≈ wavelength / collecting area diameter
- For fixed wavelengths (radio), must increase collecting area (dish size) to gain higher resolution images
- Lovell Telescope (JBO) D = 76m
- Interferometry combines signals from two or more telescopes to generate images
- Resolution proportional to the largest separation of dishes, not individual dish size

$$\sin\theta \approx 1.220 \frac{\lambda}{D}$$

Very Long Baseline Interferometry (VLBI)

- Distance between individual telescopes described as baselines
- Baselines are often hundreds or thousands of km transglobal

VLBI and eVLBI

- Large volumes of data recorded at each telescope, typically 1 Gbps or higher for several hours (8 – 12 hours)
- Data are stored on hard disks, then shipped to a central correlator for processing
- Observation results can take weeks to be processed
- Electronic VLBI (eVLBI) uses dedicated light paths from observatories to the correlator
 - Allows faster processing of data (\Rightarrow observation results)
 - Realtime monitoring of telescopes and error detection and correction
 - Enabled new science Target of Opportunity (ToS) observations
- VLBI observations infrequent however, therefore inefficient use of the light paths (~ once a month)

Bandwidth on Demand and eVLBI

- BoD offers an ideal solution for eVLBI:
 - Resources needed only for limited periods of time
 - Dedicated links required since using UDP
- NEXPReS, the NRENs and GÉANT aim to provide a BoD service for eVLBI in Europe
- Essential to verify connectivity, bandwidth and packet loss on BoD links prior to observation

Test equipment

- Tests to evaluate different hardware approaches to characterise networks
- Evaluated two solutions for characterising networks
 - FPGAs
 - PCs

Test Network

- A dedicated 10 Gbps light path between Jodrell Bank Observatory and main university campus (Schuster Building, physics)
- ~30km direct distance, but fibre is ~80km
- No other users, uncontended bandwidth

Test Hardware - FPGA

- Interconnect Break-out Board (IBOB, from CASPER, Berkley)
- Xilinx Virtex-II Pro 2VP50 Field Programmable Gate Array
- 200MHz PowerPC
- 2 x CX4 10 Gbps
- 1 x RJ45 100 Mbps interfaces

NORDUnet conference - 18th September 2012 - Oslo, Norway

Test Hardware - PCs

- Asus Crosshair IV Formula motherboard
- AMD Phenom(tm) II X6 1090T Processor
- 4 x Hynix 4GB DDR3 PC3-10600 (1333)
- Chelsio N310E-CXA 10GbE NIC and Myricom 10G-PCIE-8A-C NIC.

Test Software

- UDPmon* is a network diagnostic program which uses UDP datagrams to test endhost and network performance
- Client/server model written in C
- Measures many aspects of network communication including packet loss, packet reordering and variation in interpacket arrival times (jitter)
- iNetTest is a control framework designed to control the "gateware" in the IBOB in a manor compatible with UDPmon

*http://www.hep.man.ac.uk/u/rich/net/index.html

Test setup

- Two PCs and two IBOBs used

 - □ JBO –
 - Manchester jbnexpres1 & iNetTest1
 - jbnexpres2 & iNetTest2

Received Wire Rate

- Received wire rates measured for 10 different packet sizes
- At small requested inter-packet separation, steady data rate
- As separation increases, data rate decreases (inverse power law)

Received Wire Rate (2)

- Both hardware achieved > 9.9 Gbps data rates
- At smaller packet sizes, the hardware must process more packets per second to achieve high data rates
- IBOBs were able to achieve higher data rates than PCs for small packet sizes
- PCs achieved higher data rates than IBOBs
 - IBOB has a 200 MHz processor \Rightarrow 5 ns temporal resolution
 - PC has a 3.2 GHZ processor \Rightarrow ~0.3 ns temporal resolution

18

Received Wire Rate (3)

IBOB to IBOB

Packet Size (bytes)	Number of Packets	Time between sending packets (nanoseconds)	Requested inter- packet delay (microseconds)	Mean Time Between receiving successive packets (nanoseconds)	Received Wire Rate (Mbps)
8232	100000	6643.05	0	6643.13	9944.7
8232	100000	6643.05	1	6643.13	9944.7
8232	100000	6643.05	2	6643.13	9944.7
8232	100000	6643.05	3	6643.13	9944.7
8232	100000	6643.06	4	6643.13	9944.7
8232	100000	6643.06	5	6643.13	9944.71
8232	100000	6643.06	6	6643.13	9944.7
8232	100000	6643.06	7	6643.13	9944.7
8232	100000	6643.06	8	6643.13	9944.7
8232	100000	6969.93	9	6969.95	9478.41
8232	100000	7969.92	10	7969.94	8289.15

Received Wire Rate (4)

PC to PC

Packet Size (bytes)	Number of Packets	Time between sending packets (nanoseconds)	Requested inter- packet delay (microseconds)	Mean Time Between receiving successive packets (nanoseconds)	Received Wire Rate (Mbps)
8232	100000	6001.6	0	6649.52	9983.28
8232	100000	6288.5	1	6655.61	9974.14
8232	100000	6314.3	2	6654.99	9975.07
8232	100000	6084.0	3	6652.61	9978.64
8232	100000	6255.2	4	6656.12	9973.38
8232	100000	6180.4	5	6655.21	9974.74
8232	100000	6117.9	6	6656.16	9973.32
8232	100000	7024.4	7	7027.83	9445.87
8232	100000	8035.6	8	8036.74	8260.07
8232	100000	9019.4	9	9020.85	7358.95
8232	100000	10015.2	10	10010.6	6631.37

-

Jitter

- Defined here as the variability in inter-packet reception times
- Measured jitter for requested inter-packet delays of zero and 50 μs
- Histogram bin widths:
 - IBOBs 5 nanoseconds
 - PCs 1 microsecond

Jitter (1)

Zero inter-packet delay requested

Jitter iBoB JOB to iBoB Schuster Building

Jitter jbnexpres1 to jbnexpres2

Jitter (2)

50 μs inter-packet delay requested

Jitter iBoB JBO to iBoB Schuster

Jitter jbnexpres1 to jbnexpres2

Jitter (3)

Client	Histogram bin Requested lient Server width (us) inter- Achieved inter-packet delay						packet delay	
			packet delay (µs)	Min (µs)	Max (µs)	Mode (µs)	Mean (µs)	Standard deviation (µs)
PC - PC								
jbnexpres1	jbnexpres2	1	0	1	83	11	6.060	4.104
jbnexpres2	jbnexpres1	1	0	1	50	9	6.061	3.615
jbnexpres1	jbnexpres2	1	50	3	89	52	49.438	2.573
jbnexpres2	jbnexpres1	1	50	2	83	47	49.453	2.565
IBOB - IBOB								
JBO iBoB	Schu iBoB	0.005	0	6.620	6.805	6.625	6.633	0.076
Schu iBoB	JBO iBoB	0.005	0	6.620	6.815	6.625	6.633	0.077
JBO iBoB	Schu iBoB	0.005	50	48.370	48.775	48.565	48.585	0.077
Schu iBoB	JBO iBoB	0.005	50	48.365	48.805	48.565	48.585	0.080

Local Testing Conclusions

- Both IBOBs and PCs can transmit and receive UDP data at 10 Gbps without packet loss and packet reordering
 - PCs can send data marginally faster than IBOBs due to faster CPUs
 - IBOB data rates are more reproducible than PCs
- IBOBs have a very small jitter in inter-packet reception time
 - Deterministic behaviour
- PCs have larger jitter
 - General purpose machine that has other processes to control besides network communications
 - Data caching in socket buffers and on the NIC
- Standard deviation of PC jitter at 10 Gbps < length of time for packet delivery
- In conclusion, IBOBs are shown to be more accurate and reproducible in network testing, however they are expensive and hard to programme when compared to modern PCs. PCs, whilst less accurate, are of sufficient precision for our needs.

International BoD Links

- BoD service still experimental, not production
- GÉANT pilot BoD system uses Inter-Domain Controller (IDC) protocol
- Networks used in test a combination of BoD and static paths to connect endhosts
- Data rates of 4 Gbps used

International BoD Links

- Using the GÉANT core dynamic network, a BoD circuit was set up with endhosts in:
 - JBO, UK
 - London, UK
 - Stockholm, Sweden
 - Metsähovi, Finland
- Static light paths were provided by:
 - JANET JBO/Manchester to London
 - GÉANT Amsterdam to Copenhagen
 - NORDUnet Copenhagen to Stockholm
 - NORDUnet & Funet Copenhagen to Metsähovi

International BoD Links

NEXPReS BoD connectivity

Network Test Website

• Graphical interface to run UDPmon tests between preconfigured endhosts

twork Bandwidth Test - Mozilla Firefox Inbox - j • Toutie Interfer Winte • -> 📑 📜 📾 @ 130.88.9.129/fancy.!	rfer 🕅 Angular 💽 Green B 🖉 Grou html	p:) 🖅 Browse) 🦳 Index	≋ 14°C ⊠ cof	S t	2 Sep 09:28:32 👤 Jimmy Cullen 🤮 🗟 Subsonic 🔍 Netw 🏶 🖬
Network Bandw	idth Test				NEXPRESS Novel EXplorations Pushing Robust e-VLBI Services
Basic Network Test Advanced No	twork Test Graphical Setting	gs Documentation	Archive Results	Мар	
Test Machines					
Select the client machine:	jbnexpres2 (Jodrell, UK)	Ping Success			
Select the server machine:	watt (Metsähovi, Finland)	Ping Success	sful 🕐		
Server					
Select Port:	14233		?		
Socket buffer size:	16777216	N	?		
Set IP precedence bits:		6			
Set QoS:			$\textcircled{\black}{\black}$		
Set ToS:			0		
Client					
Packet size:	8972		?		
Number of packets to send:	100000		?		
Port number:	14233		$\textcircled{\textbf{0}}$		
Buffer size:	16777216		$\textcircled{\textbf{0}}$		
Inter-packet wait time (microseconds):			?		

NORDUnet conference - 18th September 2012 - Oslo, Norway

NORDUnet conference - 18th September 2012 - Oslo, Norway

e

AutoBAHN Reservation Interface

Autobahn Client Portal

quest service bmitted services tobahn map out AutoBAHN	Demain	Ρ	lease select an	IDM to	ANT	its submitted s	ervice	GEAN	F@133112	91315
tobahn map out AutoBAHN	Domain	Ρ	lease select an	IDM to GE 1 - 2	ANT	its submitted s	ervice	GEAN	F@133112	91315
out AutoBAHN	Domain	Ρ	lease select an	IDM to	ANT	its submitted s	ervice rvice:	GEAN	F@133112	91315
Home	Domain			GE 1 - 2	ANT 3 - 4	▼] 5 Se	rvice:	GEAN	Γ@1331 1 2	91315
Home	Demain			1 - 2	3 - 4	5 5	rvice:	GEAN	F@133112	91315
Home	Domaini			1 - 2	3 - 4	5 5	rvice:	GEAN	F@133112	91315
Home	Demain			1 - 2	3 - 4	5 Se	ervice:	GEAN	T@133112	91315
Home	Domaini					Se	ervice:	GEAN	T@133112	91315
Home	Domain					Se	ervice:	GEANT	T@133112	91315
Home	Domain									
Home	Domain									
User	Coman	GE/ Ric	ANT hard							
Justif	cation	exp	ores 1 2							
Sta	e Start time	End Time	Start port	Start mode	Start VLAN	End port	End mode	End VLAN	Capacity [Mbits/s]	Mtu size [bytes
ACTI (10	Ved Mar 07 16:05:31 EET 2012	Fri Mar 09 17:20:00 EET 2012	GEANT London host at port 12/04 (GEANT.Port.110)	VLAN	2002	GEANT Connection to Nordunet at Amsterdam port 12/01 (GEANT.Port.90)	VLAN	2003	4000.0	0
	Cancel									
						Se	ervice:	GEAN	T@133112	88033

The University of Manchester

MANCHES

Start time End time Source

Destination Bandwidth Packet size

Tests Performed

- Network test website used to verify connectivity of the BoD links, and measurement of available bandwidth and any packet loss
- Command line used to run longer running, more detailed tests

Received Wire Rate

NORDUnet conference - 18th September 2012 - Oslo, Norway

e

Packet Loss

NORDUnet conference - 18th September 2012 - Oslo, Norway

Jitter

- One million packets sent between hosts and jitter in inter-packet • reception times recorded
- Three inter-packet delays used to generate different data rates
 - 72 microseconds 1 Gbps
 - 36 microseconds 2 Gbps
 - 18 microseconds 4 Gbps

Hosts	Requested inter packet delay (µs)	Mean inter packet delay (µs)	Mode inter packet delay (µs)	Standard deviation of inter packet delay (µs)
Stockholm – JBO	72	71.4832	72	2.14274
	36	35.4732	34	2.60401
	18	17.4783	17	1.29231
JBO – Stockholm	72	71.4342	71	5.91037
	36	35.4516	36	5.93888
	18	17.4664	17	5.35474

Jitter

NORDUnet conference - 18th September 2012 - Oslo, Norway

e

24 Hour Tests

 UDPmon tests at 4 Gbps were run in each direction between JBO and Stockholm

Client	Server	Number of packets Received	Number of packets lost	Number of packets Reordered	Bytes received	Mean received wire rate (Mbps)
Stockholm	JBO	4794303918	0	18288	4.30145E+13	4012.810546
JBO	Stockholm	4794875087	2102	18292	4.30196E+13	4013.286133

• Stockholm \rightarrow JBO bit error rate of less than 1 in 3.45 x 10¹⁴

Conclusions

- BoD matches very closely the requirements of eVLBI observations
- PCs are suitable for network parameter verification up to 10 Gbps
- BoD links are:
 - Stable
 - Reliable
 - Suitable for eVLBI operations
- However, important to verify links before experiments

Acknowledgements

- NetNorthWest Anthony Ryan
- Metsähovi Ari Mujunen, Tomi Salminen
- JANET Dave Tinkler, David Salmon
- NORDUnet Fredrik Pettai
- Funet Jani Myyry
- DANTE/GÉANT

Questions/Comments

Contact information
Jimmy Cullen
Research Associate
The University of Manchester
jcullen@jb.man.ac.uk

- Additional Information at <u>http://nexpres.eu</u>
- NEXPReS is an Integrated Infrastructure Initiative (I3), funded under the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no RI-261525.

eVLBI

- Data has a constant bit rate
- Transport protocols
 - TCP
 - + Reliably transfer all data
 - Large TCP buffer (window) required for long links
 - Lost packets cause reduction window size and hence data rate
 - Retransmission of lost packets and lower data rates cause large delay in data delivery
 - UDP
 - + No buffering
 - + Timely delivery of data
 - Unreliable transfer
- UDP most suitable format for VLBI data since timely arrival is more important than small amounts of data loss
 - $SNR \propto \sqrt{(1 fractional \ loss)}$
- VLBI observations infrequent however, therefore inefficient use of the light paths (~ once a month)

GÉANT AutoBAHN

- Uses VLANs across the network
- Data streams are tagged with the appropriate VLAN tag
- VLAN tags dynamically altered based upon BoD path requests.
 - e.g. BoD Metsähovi to JBO:
 - Data are tagged with VLAN 2004 over Funet and NORDUnet, then altered to VLAN 2002 at GÉANT, which identifies the VLAN to JBO

