
Flexbuf
Tomi Salminen, Ari Mujunen
Metsähovi Radio Observatory
Aalto University, School of Electrical Engineering
tlsalmin@kurp.hut.fi

October 23, 2012

Flexbuf
October 23, 2012

2/24

Introduction on Flexbuff

I A NEXPReS EU-project started in 2011 for “Provisioning
High-Bandwidth, High-Capacity Networked Storage on
Demand“ => A high speed data recorder and streamer

I Uses Commercial-Off-The-Self (COTS) hardware.
I A modern multicore processor
I A motherboard with enough PCIE slots to facilitate the

hardware
I Efficient SATA-controllers
I 10Gb NICS
I ~20 x 2TB hard drives
I HW-configuration is only a recommendation.

I Runs vlbi-streamer software (FOSS GPLv3 licensed @
http://code.google.com/p/vlbi-streamer/)

Flexbuf
October 23, 2012

3/24

Hardware

Flexbuf
October 23, 2012

4/24

Hardware on Ara

Motherboard Crosshair IV Extreme AMD 890FX + SB850
chipset

CPU AMD Phenom
TM

II X6 1090T
Memory 16GB 667 Mhz (Motherboard acting up.

Target: 1333Mhz)
NIC Chelsio T320 10GbE Dual Port Adapter
NIC Intel 82599EB 10-Gigabit SFI/SFP+ Network

Connection
SATA 2 x SAS2008 PCI-Express Fusion-MPT

SAS-2 [Falcon]
SATA Internal JMicron controllers

HD 22 x 1-2 TB drives

Flexbuf
October 23, 2012

5/24

Hardware on Watt

Motherboard Supermicro X8DTH
CPU 2 x Intel Xeon E5620 @ 2.4 Ghz

Memory 20GB 1066 Mhz Memory
NIC Intel 82598EB 10-Gigabit AT CX4 Network

Connection
SATA 4 x SAS2008 PCI-Express Fusion-MPT

SAS-2 [Falcon]
HD 36 x 2TB drives

Flexbuf
October 23, 2012

6/24

Hardware

Flexbuf
October 23, 2012

7/24

Challenges

I Ye olde spinning hard drives maximum rate is between
60-120 MB/s

I Speeds slows as data is written to inner tracks due to data
density increasing

I Seek times very costly. Need sequential operations.
I More hard drives => More hard drives breaking.

I Above notes hint that writing data shouldn’t be done in a
rigid architecture

I Speeds per drive cannot be guaranteed.
I A faulty hard drive should not be able to slow down nor fail

a recording.

Flexbuf
October 23, 2012

8/24

I TCP/IP flow-control ramps speed up too slow, one packet
lost will drop speed back to minimum.

I The FPGA packetizers are not programmed for the
TCP-procedure.

I Problems like buffer bloat in TCP are currently being
addressed in kernel development

I Kernel hides TCP and UDP socket differences almost
completely

I Use UDP-packets. Small packet loss is accepted.
I UDP packet loss in short connections is rare on modern

hardware
I 1500 Byte packets @ 10 Gb/s ≈ 900k packets per second.

NIC interrupt rates can be an issue.
I Without using special drivers the kernel socket buffer

needs to be emptied before overflow
I Receiving thread shouldn’t be blocked or too heavy.

I With special drivers somebody needs to keep them
updated and working with newer kernel or else..

Flexbuf
October 23, 2012

9/24

I Special socket options like rxring and fanout available in
newer kernels.

I Direct copy to memory and splitting of work to multiple
threads. Just what we need, except..

I ..Interrupt rates go up to ≈ 80% on 6Gb/s
I ..Massive packet loss on fast streams.
I Problems most likely due to dropping interrupt mitigation

stuff on driver and the features dev-status.
I Implemented once for vlbi-streamer testing, but not

maintained
I Network connections will keep evolving.

I A hardware specific solution will be obsolete relatively fast.
I Requires reimplementation and yet another project.

I Same thing with writing to non-volatile memory
I SSDs are becoming affordable. A hardware specific

solution would be very different

Flexbuf
October 23, 2012

10/24

VLBI-streamer

I A hardware independent recorder and streamer.
I Hard drives as a pools of resources, used sequentially

when reserved.
I Memory split into file size (256MB-512MB) buffers.
I Memory buffers as threads that handle disk writing/reading
I Receiving thread only fills buffers.
I Modular

I Disk write-ends can be changed without changes to main
program

I Same with the network side

Flexbuf
October 23, 2012

11/24

I Uses a schedule (eg. VLBI session)
I Single invocation still available: ./configure

–enable-daemon=no
I Arbitrary number of receive/send sessions active.
I Real-time sending and delayed sending of recording.
I Software resiliant to hard drive fails. (Only on receive side

atm.)
I Packet resequencing framework.
I Easy to use (Please help by testing it and giving feedback)

Flexbuf
October 23, 2012

12/24

Scheduler

Memory buffers

Buffer
Buffer
Buffer
Buffer
Buffer
Buffer
Buffer
Buffer
Buffer
Buffer

Buffer
Buffer
Buffer
Buffer

Buffer

Buffer

Buffer

Buffer

Buffer

Buffer

Recpoints

HD
HD
HD
HD
HD
HD
HD
HD
HD
HD

HD

Writing

HD

Writing

HD

Reading

HD

Writing

UDP Receiver

Receiving packets

Grab new

Timed start

Socket

UDP Sender

Sending packets

Grab next

Socket

free
busy
loaded

Flexbuf
October 23, 2012

13/24

Uses

I Main design purpose is station-side buffering
I Eg. record @ 8Gbps from antenna and stream @ 1Gbps to

correlator.
I Long time storage. Set rec points on RAID arrays for

redundancy.
I Correlator buffer.

I Receives multiple streams from stations for correlation
I LOFAR buffers.

Flexbuf
October 23, 2012

14/24

Tests
I Long network tests show high speed with no packet loss

I 12h recording test with 8Gb/s completed without packet
loss on multiple sites.

I Utilizes only a small amount of resources
I CPU clocks to spare (~80% usage on 6 core system with

max 600%
I Less than half of 22 disks in use. (More than enough to

stream old recordings simultaneously)
I Offline throughput tests show architecture working close to

HW-limit. Tests without network side:
I ~32.9 Gb/s with 32 disks on a Xeon.
I ~17 Gb/s with 22 disks on a AMD Phenom II X6 system.
I Offline here means: syscall recv commented out, make

system think its continuosly receiving packets
I Note that this also doesn’t include copy from kernel socket

receive buffer to memory.

Flexbuf
October 23, 2012

15/24

Flexbuf
October 23, 2012

16/24

Flexbuf
October 23, 2012

17/24

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200

Pe
rc

en
ta

ge

Time(s)

CPU usage

CPU usage

Flexbuf
October 23, 2012

18/24

Flexbuf
October 23, 2012

19/24

Flexbuf
October 23, 2012

20/24

Flexbuf
October 23, 2012

21/24

Flexbuf
October 23, 2012

22/24

Utilities

I Service (aka. Daemon) scripts: Ready after boot.
I Recpoint formatting/tuning/mounting script.
I Hugepage initialization
I Parsing of logs to gnuplottable format
I Plotting of parsed logs. (Daily integration tests for

regression testing etc.)
I Queueing scripts.

I vbs_record nameoftest 300 -s 47338 -q vdif
I Extraction of schedule from snp-file.
I vbs_delete, vbs_ls..

Flexbuf
October 23, 2012

23/24

Development and faults

I Delayed sending (eg. send packet every 35 ms) is
currently done in busyloop

I Regular kernel min. sleep times tend to be ~50ms.
I Multiple sending threads clog system with busy loops.
I TCP congestion control etc. actually handle this

automatically.
I Needs QoS

Solution 1. An interrupt facility with function pointers.
I Accuracy to be tested.

Solution 2. Kernel socket option for rate control
Solution 3. Kernel Pre-emption and nanosleep (Thanks Paul)

I Set sender threads to higher priorities
I Kernel pre-emption needs to be set => Kernel tuning
I ./configure –enable-nanosleep=yes

Flexbuf
October 23, 2012

24/24

Development and faults

I Packet size change requires /etc/init.d/vbs_daemon restart
I DIRECT I/O requires 4096 byte alignment
I Buffer division for write granuality

I 512MB
60MB/s ≈ 8.5s reservation for a hard drive.

I Nasty for simultaneous receive and send, since send might
just require that specific hard drive.

I Blocking and priorities on the TODO-list.
I Granuality degrades large raid performance

I Write becomes small per disk.
I Accesses are fast, so no granuality needed.

I Packet size alignment
I Filling takes max overhead 9000−1500

256∗1024∗1024 ≈ 0.003%

Solution Find divisions for all near some (eg 512) MB spot and
reserve max per buffer.

