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Introduction on Flexbuff

I A NEXPReS EU-project started in 2011 for “Provisioning
High-Bandwidth, High-Capacity Networked Storage on
Demand“ => A high speed data recorder and streamer

I Uses Commercial-Off-The-Self (COTS) hardware.
I A modern multicore processor
I A motherboard with enough PCIE slots to facilitate the

hardware
I Efficient SATA-controllers
I 10Gb NICS
I ~20 x 2TB hard drives
I HW-configuration is only a recommendation.

I Runs vlbi-streamer software (FOSS GPLv3 licensed @
http://code.google.com/p/vlbi-streamer/)
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Hardware
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Hardware on Ara

Motherboard Crosshair IV Extreme AMD 890FX + SB850
chipset

CPU AMD Phenom
TM

II X6 1090T
Memory 16GB 667 Mhz (Motherboard acting up.

Target: 1333Mhz)
NIC Chelsio T320 10GbE Dual Port Adapter
NIC Intel 82599EB 10-Gigabit SFI/SFP+ Network

Connection
SATA 2 x SAS2008 PCI-Express Fusion-MPT

SAS-2 [Falcon]
SATA Internal JMicron controllers

HD 22 x 1-2 TB drives
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Hardware on Watt

Motherboard Supermicro X8DTH
CPU 2 x Intel Xeon E5620 @ 2.4 Ghz

Memory 20GB 1066 Mhz Memory
NIC Intel 82598EB 10-Gigabit AT CX4 Network

Connection
SATA 4 x SAS2008 PCI-Express Fusion-MPT

SAS-2 [Falcon]
HD 36 x 2TB drives
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Hardware
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Challenges

I Ye olde spinning hard drives maximum rate is between
60-120 MB/s

I Speeds slows as data is written to inner tracks due to data
density increasing

I Seek times very costly. Need sequential operations.
I More hard drives => More hard drives breaking.

I Above notes hint that writing data shouldn’t be done in a
rigid architecture

I Speeds per drive cannot be guaranteed.
I A faulty hard drive should not be able to slow down nor fail

a recording.
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I TCP/IP flow-control ramps speed up too slow, one packet
lost will drop speed back to minimum.

I The FPGA packetizers are not programmed for the
TCP-procedure.

I Problems like buffer bloat in TCP are currently being
addressed in kernel development

I Kernel hides TCP and UDP socket differences almost
completely

I Use UDP-packets. Small packet loss is accepted.
I UDP packet loss in short connections is rare on modern

hardware
I 1500 Byte packets @ 10 Gb/s ≈ 900k packets per second.

NIC interrupt rates can be an issue.
I Without using special drivers the kernel socket buffer

needs to be emptied before overflow
I Receiving thread shouldn’t be blocked or too heavy.

I With special drivers somebody needs to keep them
updated and working with newer kernel or else..
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I Special socket options like rxring and fanout available in
newer kernels.

I Direct copy to memory and splitting of work to multiple
threads. Just what we need, except..

I ..Interrupt rates go up to ≈ 80% on 6Gb/s
I ..Massive packet loss on fast streams.
I Problems most likely due to dropping interrupt mitigation

stuff on driver and the features dev-status.
I Implemented once for vlbi-streamer testing, but not

maintained
I Network connections will keep evolving.

I A hardware specific solution will be obsolete relatively fast.
I Requires reimplementation and yet another project.

I Same thing with writing to non-volatile memory
I SSDs are becoming affordable. A hardware specific

solution would be very different
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VLBI-streamer

I A hardware independent recorder and streamer.
I Hard drives as a pools of resources, used sequentially

when reserved.
I Memory split into file size (256MB-512MB) buffers.
I Memory buffers as threads that handle disk writing/reading
I Receiving thread only fills buffers.
I Modular

I Disk write-ends can be changed without changes to main
program

I Same with the network side
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I Uses a schedule (eg. VLBI session)
I Single invocation still available: ./configure

–enable-daemon=no
I Arbitrary number of receive/send sessions active.
I Real-time sending and delayed sending of recording.
I Software resiliant to hard drive fails. (Only on receive side

atm.)
I Packet resequencing framework.
I Easy to use (Please help by testing it and giving feedback)
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Uses

I Main design purpose is station-side buffering
I Eg. record @ 8Gbps from antenna and stream @ 1Gbps to

correlator.
I Long time storage. Set rec points on RAID arrays for

redundancy.
I Correlator buffer.

I Receives multiple streams from stations for correlation
I LOFAR buffers.
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Tests
I Long network tests show high speed with no packet loss

I 12h recording test with 8Gb/s completed without packet
loss on multiple sites.

I Utilizes only a small amount of resources
I CPU clocks to spare (~80% usage on 6 core system with

max 600%
I Less than half of 22 disks in use. (More than enough to

stream old recordings simultaneously)
I Offline throughput tests show architecture working close to

HW-limit. Tests without network side:
I ~32.9 Gb/s with 32 disks on a Xeon.
I ~17 Gb/s with 22 disks on a AMD Phenom II X6 system.
I Offline here means: syscall recv commented out, make

system think its continuosly receiving packets
I Note that this also doesn’t include copy from kernel socket

receive buffer to memory.
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Utilities

I Service (aka. Daemon) scripts: Ready after boot.
I Recpoint formatting/tuning/mounting script.
I Hugepage initialization
I Parsing of logs to gnuplottable format
I Plotting of parsed logs. (Daily integration tests for

regression testing etc.)
I Queueing scripts.

I vbs_record nameoftest 300 -s 47338 -q vdif
I Extraction of schedule from snp-file.
I vbs_delete, vbs_ls..
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Development and faults

I Delayed sending (eg. send packet every 35 ms) is
currently done in busyloop

I Regular kernel min. sleep times tend to be ~50ms.
I Multiple sending threads clog system with busy loops.
I TCP congestion control etc. actually handle this

automatically.
I Needs QoS

Solution 1. An interrupt facility with function pointers.
I Accuracy to be tested.

Solution 2. Kernel socket option for rate control
Solution 3. Kernel Pre-emption and nanosleep (Thanks Paul)

I Set sender threads to higher priorities
I Kernel pre-emption needs to be set => Kernel tuning
I ./configure –enable-nanosleep=yes
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Development and faults

I Packet size change requires /etc/init.d/vbs_daemon restart
I DIRECT I/O requires 4096 byte alignment
I Buffer division for write granuality

I 512MB
60MB/s ≈ 8.5s reservation for a hard drive.

I Nasty for simultaneous receive and send, since send might
just require that specific hard drive.

I Blocking and priorities on the TODO-list.
I Granuality degrades large raid performance

I Write becomes small per disk.
I Accesses are fast, so no granuality needed.

I Packet size alignment
I Filling takes max overhead 9000−1500

256∗1024∗1024 ≈ 0.003%

Solution Find divisions for all near some (eg 512) MB spot and
reserve max per buffer.


